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ABSTRACT 

The intensity of second harmonic light generated by 

reflection from a Gallium Arsenide crystal is calculated in 

detail in four cases of polarization. Relevant properties of 

GaAs are stated and an experiment is described. Based on this, 

constitutive relations are written in the weak field approxi- 

mation and the second and third order material tensors are 

reduced using crystal symmetry. The nonlinear wave equation 

is solved in the parametric approximation when phase matching 

is not present. The boundary value problems for the funda- 

mental entering the medium and for the second harmonic leaving 

are solved. The only significant null solution is found to 

be the Brewster's angle extinction. Some numerical exploration 

of the exact effects of absorption at both fundamental and 

second harmonic are made. They are found to be small and are 

negligible for qualitative purposes unless the imaginary part 

of the dielectric constant exceeds the real part. Variation 

of intensity with crystal orientation is described in detail. 

The occurrence of phase matching as a null solution of the wave 

equation is seen to offer a natural approach to the problem 

of obtaining the geometry of phase matching for the most 

general optical medium. 
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SECOND HARMONIC GENERATION 
BY I ZFLECTION FROM GaAs 

1. THE GENERAL PHASE MATCHING PROBLEM 

The onset of stimulated effects In nonlinear optics is quite 

dramatic. Ordinary nonlinear effects arising from even the most 

intense excitation are barely detectable whereas stimulated effects 

may be of the same order of intensity as the excitation. It may 

even be said that the extension of stimulated effects into the 

optical region is the cause of the recent explosion of interest 

in nonlinear optics. For the nonlinear effect, second harmonic 

generation, a criterion of analogous importance is that of phase 

match between the fundamental and second harmonic. When this con- 

dition is met, the two waves proceed in the same direction, in step, 

in principle allowing complete power transfer from the fundamental 

beam to the second harmonic beam. If this condition is not met, 

the second harmonic intensity remains very small even if a very 

intense fundamental is used. 

Often a medium is normally dispersive and the index of re- 

fraction at the second harmonic is higher than at the fundamental. 

Then it is not possible for the two waves to proceed in the same 

direction and be in 6tep for the magnitude of their wave vectors 

is different. The most well known way of achieving phase match is 

to use the birefringence of certain anisotropic, nonabsorbing, 



nonlinear crystals.1 In an anisotropic medium there are in general 

two indices of refraction for each direction and they vary with 

direction. Thus sometimes a direction can be found where an index 

at the fundamental is the same as at the second harmonic. Recently 

the use of optical activity has been advanced as a means of achieving 

phase match.2 Both of these methods make use of linear optical 

properties, which may be comprehensively categorized by the use of 

matrix algebra. If A' is the 2x2 matrix obtained by projecting 

A in E = AD onto the plane transverse to the wave vector, then 

the l) real symmetric, 2) real antisymmetric, 3) imaginary symmetric, 

k)  imaginary antisymmetric parts of A' contribute respectively the 

following optical effects: l) birefringence, 2) optical activity, 

3) anisotropic absorbtion, k)  circular dichoism.3 In general optical 

media exhibit all combinations of these effects. From this it is 

clear that if the two methods above represent fairly the state of 

results in the general phase matching problem, as the author believes, 

then it is not completely solved. 

This report is a calculation of the second harmonic intensity 

produced by reflection from a Gallium Arsenide crystal, including 

the effects of absorbtion at both fundamental and second harmonic. 

1 D. A. Kleinman, Phys. Rev. 128, 176l (1962). 
2 H. Rabin and P. Bey, Bull. Am. Phys. Soc. 12, 8l '1967). 
3 G. Ramachandran and S. Ramaseshan, Handbuch der Physik XXV/l 
107 (1961). 



Conceived of as an approach to the general phase matching problem, 

second harmonic production by reflection is rather oblique. In 

fact it is not even a true subcase since the parametric approxi- 

mation used here is not capable of eliciting the effects at 

phase match. Still it exhibits many necessary techniques and a 

thorough understanding of it is no doubt a prerequisite for an 

attack on the general phase matching problem. Thus while most 

of the theory appearing here has appeared before,4 general methods 

are used where known because of the above outlook on the general 

phase matching problem. 

The essential steps in the calculation of the reflected 

second harmonic intensity, each giving rise to a section below, 

are: describing GaAs and the geometry, solving the nonlinear 

wave equation, solving the boundary value problems and obtaining 

the intensities. The next to last section gives some numerical 

results and the last section remarks on the general phase matching 

problem. 

4 P. Butcher, Nonlinear Optical Phenomena, Ohio State University 
(1965) 



2. GALLIUM ARSENIDE AND THE EXPERIMENTAL SETUP 

An experiment with GaAs of the sort considered here was first 

reported in 196l.5 Since GaAs is opaque, a reflection experiment 

appears to be required. It has Tijm point group symmetry.6 This 

point group is cubic so second order material tensors reduce to 

scalars and linear optical effects become Isotropie 7 Furthermore 

the point, group excludes the antisymmetric part of a second order 

tensor so optical activity and circular dichroism are absent. Thus 

the linear optical properties of GaAs may be completely described 

by a complex dielectric susceptibility 

e = (v + .H)2 (2.1) 

where v and H are the conventional index of refraction and absorbtion 

coefficient. Suppose the illumination is ruby laser light at 6943A. 

If the corresponding radian frequency is ID , then for present purposes 

the linear optical properties are completely described by8 

5 J. Ducuing and N. Bloembergen, Phys. Rev. Letters 10, '+Jk  (1961). 
6 Wycoff Structure Tables Vol. I 
7 The latter part of this section is a discussion of the effects of 
symmetry on material tensors. 
8 J. Davey and T. Pankey, J. Appl. Phys. 35, 2203 (1964). The accuracy 
of these figures is probably a few percent of the largest figure. 
They were obtained by a Kraraers-Kronig analysis of reflectance d;:ca. 
of H. R. Philipp and H. Ehrenreich, Phys. Rev. 129, 1550 (I963). 
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v =3.79 
l 

v =3-89 

H ä .25 

H = 1.53 
2 

(2.2) 

where v is written for v(ivu ). 
n o 

Specifically the experiment considered is the following. 

A GaAs crystal is prepared with a (110) type plane as a reflecting 

surface in such a way as not to damage the crystalline properties 

of the surface layers. This is important since the absorption 

depths are 

X/H =I kkOOk K/K   = 3Ö1A, 
2 

Ruby laser light of known intensity I and polarization, normal 

n or parallel p, strikes the reflecting surface with angle of 

incidence 0. The reflected beam is filtered to remove the funda- 

mental. The second harmonic intensity is then measured in two 

polarization components Jn and Jp. The crystal may be rotated 

about a perpendicular to the surface to expose different crystal 

orientations. This orientation angle is ¥ and the ¥ = 0 reference 

will be specified later. These points are illustrated in Figs. 1-3. 

From the foregoing and from general considerations one may 

write constitutive relations taylored to GaAs and the experiment. 

For a medium at optical frequencies 



B = H (2-3) 

and assuming no space dispersion one has locally 

D(t) = E(t) + J* dTR
(l)(t - T)E(T) 

,(2) f   dT  f   dT R^'(t - T , t - T )E(T )E(T ) + (2.4) 

where F ' and R   vanish for negative arguments and thus give a 

casual relation. This is a relation between vector components with 

component indices temporarily omitted. Thus R ' is a second order 

(9) tensor and Rv ', third. The use of the Taylor expansion excludes 

hard nonlinearities (multivalued regions, jumps, infinities) in order 

to avoid overly restrictive domains of convergence. Furthermore 

truncating (2.4) after the last term written is allowed in the small 

field approximation. In the frequency domain, this gives 

L(u>) = E(u)) + x^(<u)E((u) 

00 03 

+ 7T- f     dm    I      duu 6(uu - u)    - (i> x (2), x^,    xW    x 
2n J iJ 2V l        2)x     K, tu )E(u> )E(«u ), 

(2.5) 

-00 -co 1 2 1 2 

and x   and x   are analytic when considered as functions of 

complex arguments. In the time domain fields must be real and this 

imposes, in the frequency domain 



E*(u>) = E(-u>). (2.6) 

For E(t) and D(t) simultaneously real 

X(l)««0 =XU)(-«), (2-7) 

X
(2)*(u)  a)) =x(2)(-^ • -•>. (2.8) 

12 12 

The discussion will now be restricted to the steady state 

case where frequencies present at one time are always present. 

Let the incident beam he of the form 

E(t) = Ee"ltt)ot + cc, 

where cc represents the complex conjugate of the preceeding 

term. In the frequency domain, 

E(u>) = 2nj(u) - u) )E + 2n«(u) + u>Q)E* 

= 2n6(u» - U) )E + CC (2.9) 

where cc implies that (2.9) satisfies (2.6). Substituting in 

(2.5) 



r 
D(oi) = 2rr6(uü - ,B )[l + x

(l)(u, )]E + c^ 

+ 2TT6((ü - 2iu )x^   ^(u> . u> )E2 + cc o O       0 

+ 2TT6(ü))X     (• > ■« )EE* * c*c> 

using (2.7) and (2.8). Subsequently the ID = 0 component will 

be ignored. Reverting to the time domain, holding ou constant, 

D(t) = e(«B0)Ee"
a,ot + cc + iinP^ a»0, t) (2.10) 

where e(uu ) = 1 + x  (• ) (2.11) 

is the usual susceptibility and 

PNU<*V *> = XiJk
(2)(%, -o^V"81"0* +CC <2'12> 

Summation on repeated indices is implied. Henceforth NL will 

be omitted since the linear polarization is not mentioned. Evi- 

dently the incident wave excites second harmonic polarization 

of the medium and, as will be seen in the next section, second 

harmonic radiation is emitted. 



It has been mentioned that e reduces to a scalar because of 

crystal symmetry. Likewise the second order susceptibility x  » 

having at most 27 independent components, undergoes considerable 

reduction.8 As an example of reduction due to symmetry, consider 

the symmetry 

(2),     >     (2)/     N 

to) 
obtained from (2.12). The 9 elements of the form %±.i       are 

unaffected but the remaining l8 are equal in pairs. Thus it 

should require at most 18 constants to specify ^  v '. Applying 

the elements of ?5m to the remaining elements reduces them to 

6 equal elements while the remainder vanish. There are several 

listings of tensors reduced by crystal symmetry in the literature. 

One such for third order tensors gives S  = S  = S .10 In this 
14    S    36 

"contracted" notation one writes the components symmetric in 

the last two indices separately from those antisymmetric. Under 

this convention the second index means l:xx, 2:yy, 3:zz, ^:yz, 

5:xz, 6:xy. Thus in present notation 

X133   XP(l23) 

9 A general treatment of this problem is P. Erd'ös, Helv. Phys. 

Acta 27, ^95 (19&0. 
10 J. Giordmaine, Phys. Rev. 138, Al601 (1965). 

10 



where P(-125) is any permutation of 125. Henceforth x represents 

*133« This reduction is performed in a special coordinate system 

in which a simple representation of the symmetry elements is 

possible. For many point groups, for cubic point groups in 

particular, the axes of this special system are the same as 

those of the conventional unit cell.11 The result is for 

(2.12), writing the complex amplitudes of the positive frequency 

parts only 

P = XE E , 
1   * 2 3 

P = vE E , 
2   * 1 3 

P = XE E , 
3   * 1 2 

a local relation in crystal coordinates. 

This relation will now be evaluated in experimental coordi- 

nates by substituting components arising in two rotations. The 

rotation equations are written as substitutions, i.e.,with old 

coordinates on the left, 

x = Rx'. 

11 International Tables for X-Ray Crystallography, Kynoch Press, 
Birmingham, England (1952) gives the convention for associating 
coordinate axes with conventional unit cells. 

11 



In this way one may drop the primes immediately as there is nr, 

further reference to the old coordinates. Let the first rotation 

be 

R = -HH:h® 
since then the new Z axis is a [110] type axis. This gives 

P = -xE E 
1       2 1 

P = \ X(E 
s  - E 2) 

2        3     1 

P = vE E 
3   *23 

Let the second rotation be 

(cos* -sinf   0\ 

sin*   cosY   0 1 = Rj Y) 

0        0        1/ 
R = I sin? cosY 

to allow general rotations about the [110] axis. This gives 

P = - v[E E (cos2Y - sin2*) + (E 2 - E 2)sinYcosY] cosY 
112 12 

+ 4 v(E 2 - E 2cos2Y + 2E E sinYcosY - E 2sin2Y) sinY 
2 *N 3      1 12 2 

12 



P   = Y[E E (COS
2

* - sin2*) -f- (E 2 - E 2)  sinYcosY] sinY 
2 12 1 2 J 

+ £ x(E 2 - E ^COB8* + 2E E sinYcosY - E 2sin2Y)cosY 
*   3     1 12 2 

P = vE (E sinY + E cosY). 
3     3  1        2 

The plane of incidence is the XZ plane and Y is the angle from 

the ^100) plane to the plane of incidence. It is convenient 

to reduce this to cases of incident field polarization normal 

and parallel to the plane of Incidence. 

P = | xE 2sin¥(3cos2Y - l) 
1 2 

P   = - \ YE 
2sin2¥cosY 

2 =2 
E (E 

nv   i 
0 = E ) 

3 
(2.13) 

P    = 0 
3 

P   = - I XE 2sinYcos2Y + | xE 2sinY 

P   = £ XE 2cos*(3sin2Y - 1) + £ xE 2cosY> E (E    = 0)    (2.l4) 
2 1 3 (     P     2 

P   = XE E sinY 
3 13 

13 



3. THE NOMLINEAR WAVE EQUATION 

The Maxwell equations for media at optical frequencies are 

VXH = |B,   V-B = 0, 

1 • 
V X E = - - D,  V • D - 0. 

(3.1) 

Applying (2.3) to (3,1) and eliminating B and H gives the wave 

equation 

1 " 
V X V XE + — D = 0, 

""  c2~ 

which gives in the frequency domain 

u>2 

V  X V  X E(u))  - — D(a)) = 0. (3.2) 
c2~ 

This equation is nonlinear since D is nonlinear in E so the 

method of eigenfunctions, In which the general solution is 

obtained by superposition, does not work. Thus E(u>) must he 

the total field. One anzatz for the form of the total field 

is 

CO 

EM = SnJ^ 6(w - nu)o)En (3.3) 
n=j°> 

14 



Tecause once one frequency is introduced the sum and difference 

effects of (2.5) may build up all harmonics. Introducing (3.3) 

in (3.2) gives an infinite system of connected differential 

equations for which the incident field E ,,  is known. An 

iteration procedure may be set up based on 

E =Y    XrE(r> 
n ^j n 

r=a(n) 

\ 

where r is the order of the iteration, X is an expansion parameter 

to be set equal to one, and a(n) is the order of first appearance 

of the th haimonic. The zeroth iteration is 

0) 

v XVxE
(°) -JLeE

(0> = o 
~i   c2 r-i (3-*) 

where e = e(nu) ). The first iteration is n     o' 

v x v x E 
(1) - k JL e E (1) = l6r£- P(E (0)) 

~2        c2   2~2 c2 X 
(3.5) 

and there will be an u) = 0 contribution in this order also. 

The next iteration gives a correction to the fundamental, 

A correction (2) (2) E   , and the third harmonic appears, E v ' 
~1 ~3 

to the second harmonic does not appear until the third iteration 

(2} and it is third order in x  .■ a very small quantity. Thus 

15 



(3-5) gives an accurate E . This approximation is called the 
~2 

parametric approximation since E evidently may be thought of 
•—i 

as a sot rce of energy which generates E via the parameter x  • 

If significant depletion of E occurs, the approximation is 

invalid. Therefore phase matching for any harmonic actually 

present must be excluded. As a result the incident wave behaves 

as it would in a linear medium and the second harmonic is obtained 

as the solution of a linear inhomogeneous wave equation with an 

effectively known source term P(E ). 

Using the complex amplitudes of the positive frequency 

parts of (2.12), the source term has the plane wave form 

p »^("»o) ■ x _ „ v   e»k((Bo) • x _,  'k(iuo) • x 
V        " Xijk\je      "~ ike ~ 

hence k(2u» ) = 2k(u> ) (3.6) 

*** Pi = Ki.jAAk 

Because of homogeneity these amplitudes are constant throughout 

the medium. Variation due to absorption is accomplished by 

using a complex wave vector. For (3-5) then12 

12 Note that vector magnitudes are written |k| = k. 

16 



r(k 2 . k -2- e )l - k k ] • E = l6rr -2_ P 
2      c2   2     ~-2*~2    ~2       c2 "*" 

where I is the unit diadic. Since any vector may be decomposed 

into parts longitudinal and transverse to a direction k , 
—2 

13 

P=(l-kk)*P + kk    • P 
~ -TT*8 -      ~2~2       ~ 

A <\        A 

= k    x(Pxk)+kk    -P. 
""2 ~       ~~2 ~2"~2       "~ 

Decomposing E    similarly,  one may equate longitudinal and trans- 
~~2 

verse parts. 

2 2 

_4_2_ekk    • E    = l6n — K k    . p 
„2 2"~2~2        ""2 „2     ~2"~2        "" 

ID A U) 

(k 2 - 4 -2- e  )k   x(E   x k ) = l6n — k   x(Pxk) 
,2 2      2 2     ~2 

or k    • £    = - ~- k    • P 
~2       ~2 €     ~2 

2 
(5-7) 

l6l7U)   2 

k    x E   =     k    x P 
~2        ~2 ~2        ~ 

c^ 2 - kw 2e 
2 0      2 

J+TT 

13 Circumflex denotes unit vector. 

k x P. 
1    2 

(3.8) 

17 



(e * e since phase matching has been excluded.) In the last. 
1   2 

step (3-6) was used and (3.10) was anticipated. To complete the 

solution any solution of the homogeneous equation may be added. 

Homogeneous solutions are 

k(u>) • Ejjd») = 0, (3.9) 

k2(u0 = Si^Sl    . (3.10) 

c2 

18 
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k.    THE BOUNDARY VALUE PROBLEMS 

In the coordinates set up in section 2, let the boundary be 

the plane n • x = 0 with fi pointing into the first medium which 

is transparent and nondispersive. The second medium is described 

by section 2. Given an incident uniform plane wave with linear 

polarization, find the reflected second harmonic intensity. There 

are three steps. Find: l) the transmitted fundamental, 2) the 

second harmonic polarization (section 2), and 3) the reflected 

second harmonic. This section concsrns the first and last steps. 

Rays are designated in Table 1 and Fig. k.    The first and 

second symbols on each line pertain respectively to the fundamental 

and second harmonic. Angles are measured from the vertical in 

the respective medium. In the boundary value problem for the 

fundamental first the wave vectors will be determined before 

dealing with the amplitudes. 

o Ampli- Wave Angle of 

^0 
tude Vector Incidence 

Incident or E k e 

Source Wave S £ a 

Transmitted F I * 

Wave 1*1 t T 

Reflected G m 7 

Wave R r P 

Table 1 Ray Nomenclature 

Second 
Harmonic 

Fig. k  Ray Geometry 

19 



From (3.10) 
tu 

k = m = -^ (k.l) 

2 
1 o 

c2 
= t2 = v2 -v,s + 2if • r (i*.2) 

where {, = <t* + it", <t' and -t" real. Since the waves must be 

the same function of position on the boundary, 

k • x = V   • x = m • x,    n • x = 0 (^3) 

and 

0 « V*  • x,    n • x = 0. (k.k) 

The latter implies 

£  = £ (4.5) 

and 

V   • C  = ft" cos* (^.6) 

since the transmitted wave is nonuniform due to absorption and 

decreases most rapidly in the direction -fi. Using the vector 

identity 

n x(xxn)=x-n-xn 

or 

x = fl x (x X n),   ft • x = 0, 

(lv.3) becomes 

kxn,xxn = -t' xn-xxn = mxn-xxn. 

But since a vector of the form A x n is in the surface and since 

x xn is any surface vector, 

20 



.-■•—■«IMP VLUM 

or 

k x fi = O x h" = m x n 

ksinG ■ V 8in0 ■ msin? . 

(4.7) 

(4.8) 

Being real, m is now completely determined by the magnitude 

(^.l), the two components (4.7) and by knowing in which mediun 

it lies. Then 

7 = 9 (4.9) 

Also (4.7) states that k, V, m, and n lie in a common plane, 

defined to be the plane of incidence. To complete the deter- 

mination of K, define 

cV ii       ex» 

«>, 
(4.10) 

Then (4.2) and (4.6) give 

e    = n ,2 - n "2 + 2m 'n Mco«d 
ii l ii 

and using (4.8) 

cos  V n 
n ' 
l 

' 2 -  sin20, sinG < n '   , 
l l 

21 



taking the positive square root since by (4.5), V  and l" lie 

in the same quadrant.    This gives 

c    = n ,a - n "2 + 2in 'Vn ,a - sin^Ö (4.11) 
ill 11 ' 

together with the restriction 

sine < n ', (4.12) 

excluding total reflection. The Inverse of (4.11) is 

2n »2 = e • + sin29 + V(e • - sin^)2 + e "2 

1      i 11 

(4.15) 

2n "2 = - e • + sin29 + V(e ' - sin^)2 + e "2 

giving the "refractive index" and "absorption coefficient" 

in terms of the complex susceptibility and angle of incidence. 

Since the definition (4.10) makes n ' and n " dependent on 8, 

they are not strictly material constants but depend on a non- 

material boundary condition as well. The usual convention is 

(2.1) which is used here only to determine e from (2.2). Now V 

and Vx  are determined by (4.10), (4.7), and (4.5) just as m was. 

Because of medium homogeneitv this determination of I and m 

applies throughout the appropriate medium. 

22 



The amplitudes may be determined by the tangential boundary 

conditions for electric and magnetic vectors, 

(E + G - F) x n = 0, 

(kxE + mxG-txF) x n = 0, 

since according to (3.9) they are transverse, 

k'E = m«G = t'F=0. 

Using the experimental coordinates of section 2, one has 

k = m = I   =0 
2    2    2 

and a system of 6 complex algebraic equations in 6 complex 

unknowns, F and G. 

F    - G = E 
ill 

F    - G = E 
2 2 2 

IF    -mG =kE 
3   2 3   2 3   2 

(,F    - t F    -mG    +mG =kE    -kE 
31 13 31 13 31 13 

-IF    + I F =0 
11 3  3 

m G    + m G =0 
11 3   3 

>      (*.U0 

Before solving by Cramer1s rule it is necessary to see if the 

system determinant has any significant zeroes. 

1 

0 

0 

0 = det | -lg 

0  0 

0 0 -1 0 °l 1 -1 0 0 0 0 

1 0 0 -1 0  ' <3 -*9 
0 0 0 0 

*a 0 0 
"m3 

0 0 0 1 0 -1 0 

0 -*l -*s 0 V = det 0 0 
<<3 -lx -"fe mx 

0 ^3 0 0 0 0 0 lx *3 0 0 

0 0 mi 0 V 0 0 0 0 ml m3 

23 



Thus the system is block diagonal and separates into two inde- 

pendent systems, one for y field components only and one for 

x and z components. For zeroes of the y system determinant 

0 = det 
-m 

I   - m 
3    3 

or 

t'=m and t " = 0 . 
3     3      3 

Using (4.5) the latter implies I"  = 0 so from (4.10) either 

tu = 0 or n " = 0. In addition 
o      i 

I  ' = -V cos^ 
3 

m = mcos7 
3 

so from (4.1), (4.2), (4.9), (4.10) and cose = -cos7 

n * cos$ = cos6, m   i 0 i o 

= n ' Vl - sin2$ 
l 

= Vn ,2 - sin29 
l 

24 



which implies either u> = 0 or n * = 1. Neither of these con- 

ditions, u> = 0 or n ' = 1 and n " = 0, is of present interest. 
o      i        i 

For the x and z system determinant to vanish 

0 = det 

1   C  -1 

*>!       Is       ° 
0   0   in, 

0 

*3 

- V n^l2       (^.1?) 

which implies either I   = 0 = m or m2/m  = lz/t   and the 
3        3        3 3 

former is of no interest. Since both sides of the latter may 

be varied independently, its general solution is that both 

parts are equal to a common constant, say K. For the left 

hand side then K is real and 

m2 = m2 + m2 = Km 
13      3 

or 

m 2+ (m - £K)2 = £K2, 

thus possible m   are |m |  s ^C.    For the right hand side 

13      3 

and -l is complex so 
3 

+ l >2 - I "s = U  ' , (U.16) 
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at *i " = Kt ". 
3  3      3 

If t " t  0 then -t ' = k and t 2 - t "2 = £K2 so possible t 
3 3 13 i 

are \l  | 2: ^K. From (4.16) this inequality holds even if I " = 0. 
X 3 

The only solution compatible with both inequalities and (4.8) 

is 

\\\  = fc = |*J 

With (4.16) this implies t " = 0, the no absorption case. 
3 

Then from (4.l), (4.2), (4.15), and (4.8) 

Is = e^2, 

I   = e m 
3    13 

-t = m 
l   l 

and eliminating V s in the first equation 

m2+e  2m2 = e (m2 + m2) 
1 13 11 3 

or 

(e    - l)m 2 + (e    - e  2)m 2 --= 0 
1 1 1 13 
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-> ■■ m: »M m«< 

implying e    = 1 or m     = e m     or 
1 113 

tan2^ = e , e " 
B i l 

= 0. (*.17) 

This is the condition for Brewster1s angle. For polarization 

in the plane of incidence, the reflected ray vanishes at this 

angle. It has been shown that this is the only significant 

zero of the syetem determinant. 

Perhaps this investigation of null solutions is only a 

nicety in the present context. It does endow the calculation 

with a satisfactory feeling of completeness. However in more 

complicated cases this tool will still apply possibly to uncover 

regions of significant departure from the general solution, 

--regions which may be as useful as the Brewster1 s angle extinction. 

To proceed with the general solution, the y component 

system gives by Cramer1s rule 

k 
F = J- 

m 

m 

Likewise for the x component 

(4.18) 

kf 
k 

rj 
m 

m 

— E , 
2   1 

(4.19) 

11 



and from the transversality condition 

F = - T-i F . (4.20) 
3   t  l 

3 

This completes the determination of the transmitted fundamental. 

In the second harmonic boundary value problem the source 

wave vector is given by (5.6) and is complex. 

£ = 2t (^.21) 

The freely propagating wave vector magnitudes are from (3-10) 

a» 
r = -2 , (4.22) 

4e <*>* 
■j  c 

,2 
t2 = —S-2- . (4.25) 

c 

Continuity of Tields at the boundary requires equality of 

phase functions, giving for the complex parts 

s" • x = t" • x,   n • x = 0. 

But by (k.k)  and (4.21) s" has no tangential part, hence 

4." £ t = - n. 
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As before all wave vectors are in the plane of incidence and 

the real tangential components are determined by 

-* 
t* sim = rsinp = s'sina. (4.24) 

The reflected wave vector is now completely determined and in 

particular from (4.21) 

a  =$ 

and by comparing (4.24) and (4.8) using (4.22), (4.21), (4.2) 

and (4.1) 

p = 6. (4.25) 

Now define 

n . = pL ,   n " . §£ (4.26) 
2    20) 2    2j) o 

so that 

e = n ,2 - n "2 + 2m " Vn '2 - sin20 
2    2      2 2    2 

29 



and total reflection does not occur. Inversely 

fa  ,2 - € ,2 + sin29 + V(« ' - sin^)2 + e "2 
2      2 2 2 

2n "2 = - e • + sin29 + V(e ' - sin2e)2 + e "2 
2        2 2 2      / 

(4.27) 

Thus t is also completely determined. 

For the source wave amplitude one has from (3-7) and (3.8) 

s • S = •HI ft p — S • r e — ~ 
2 

S X S = 
% 

s x P — —  e - e ~ — 
1    2 

(4.28) 

(4.29) 

where P is determined from F by (2.13) and (2.14). Tangential 

boundary conditions are 

(S + T-R) xn=0 

(_sxS+txT-rxR) xn=0 

and from (3.11) 

t • T = r • R = 0. 
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Except for the longitudinal component in the inhcmogeneous 

term, (4.28), this system has the same algebraic form as before. 

For the y component, using (4.29) and s   = 0, 
2 

E     -  t 
R   = -a—-a s 

2     r    - t      2 
3 3 

4TT        s    - t 

e    - e      r    - t 
12        3 5 

(4.30) 

For the x and z components 

r (t2S    - t ff 
3        l 3 te 
t r2 - r t2 

R    = - -± R 
3 r      i 

3 
(*.3D 

where 

S^    =  G S    -  s S 
t2 3   1 13 

4n (s  P_    -   S_P   ), 
6,    -   e 3    1 13 

1 2 

the y component of (k.29).    Solving (4.28) and (4.29) for S , 
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s   = 
1 

s    im s 
-i   — (sF    +sP)+-ä. 

Jm 

82   e 11 3  3 e    - c 
i       z 

(sP 
3   1 

SP) 
1 3 

kn 
s2e (e    - e ) 

2     1 2 

C(e s2 - «  s 2)P   - e 8 6 P ] L      2 111 1133 

and using (^.21), (U.2), (4.25), and (4.24) 

We 
S   = 

s2« (e - e ) 
2  1 2 

[(t2  -   Si
2)Px 6   8 P  ] 

13  3 

4TT 

t2U      -  « ) L*3^1 
1 2 

S   S  P  ], 
13  3 

Finally 

im 
17                   .    ... 

(■ ■t) i     e    - s 
1            2 

r2       t2Tl 

r~ " t~ 
3 3 

[t  P     +   t  P  ]. (^-52) 
3   1 13 
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5. THE REFLECTED SECOND HARMONIC INTENSITY 

A completely  polarized beam can be analyzed by finding 

the intensit? >»R of two linearly polarized components and their 

phase difference. Arbitrarily limiting this calculation to an 

examination of intensities leaves as the most general set of 

measurements the four polarization cases listed in section 2. 

Furthermore all four cases provide different information from 

a qualitative standpoint. Thus in the last section the inde- 

pendence of the y component and x - z component systems, shows 

that in penetrating the surface, a ray preserves two special 

cases of linear polarization, normal or parallel to the plane 

of incidence. However the second harmonic polarization process 

mixes these components as shown by (2.13) and (2.14). 

The normal component second harmonic intensity is , from 

(MO) 

J = 
n 

4TT 2 s 
3 

- t 
3 

e    . e 
1        2 

r 
3 

- t 
3 

IPJ 

with P generated by F through either (2.13) or (2.14) according 
2 

to the incident polarization. Thus 

Jm=9 

2n 
|x|2 |F |4 sin4Ycos2Y 

= 9 
2n k - m 

3 3 

I - m 
3 3 

|x|2 I 2sin4Ycos2Y (5-1) 
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vhere the second J index denotes incident polarization. Now 

I = IE |2= |E |2 

P  ■ x1   '3' 

so by the tranversality of E 

\\\*' 

k 2 

t2       P 

Using also (2.14), (4.19), (4.1) and (4.2) 

|P I2 = £ Ixl2 |F 2cosY(38in2Y - l) + F 2COSY| 1  2 1 3 

= tlx|; 
m k2 - k m2 

3 3 

|G j2 I 2cos2T|  1 + -3- (3sin2Y -2)I2, 
1 P jf2 

hence 

V 
2ffe 

e    - c 
1       2 

s    - t 
-J ä 
r   - t 
3       3 

mk2 

3 
k m2 

3 

mt2-ti2 

3 3 

Ixl V 

x |l + -A-   (3sin2¥ - 2)  |2cos2¥ (5.2) 

From (4.31) and (4.32) 
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[ 
J    = |R |2 = IR \ 
P   ' l1     ' 31 

kn 

e - e 
1    2 

t - s 
3 3 

t r2 - r t2 
3 3 

It P  + t P I2 . 1 3 1    13' 

The case of normal component illumination simplifies because of 

the absence of a z component in (2.13). 

pn 

2n 

e    - e 
1 2 

2n 

e    - e 
1        2 

It XF 2|2sin2¥(3cos2Y - l)2 

s    2 

! k 
|t |2   -2- 

m 

■t   - m 
3       3 

Ixl 

x    I ^in^Ocos2* - l)2 
(5.3) 

For parallel component illumination, from (2.1^) 
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P   = h x( -3F ^inYcos2* + F 2sinY) 
11 3 

-ix-= 
(m k2 - k m 

;m IT - I m' 
3 3 

2\   2 

E 2 [1 - -2_ (3cos2Y ► l)]sin¥ 

P    =YFF sinY 
3 13 

/m k2 - k m2\ t £ 
_2 3__] E 

2 -Jui sinY 
Im t2 - I, m2|   x     k 2 
1   ° 3       / 3 

hence 

PP 

ate 

€    - e 
1 2 

t    - s 
3 3 

t r2 

3 
r t' 

m k2 - k m2 

3 3 

m I' 
3 3 

|x|2Ip
2sin2Y 

lyi (3cos2Y + 1)]  - 2t     -i-3- (5-M 
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6. NUMERICAL RESULTS 

The above intensities are functions of a number of parameters, 

J = Jjk(V V V ,xl' V e' ¥) 

Also several factors are complex algebraic so one may feel it is 

hard to extract information at a glance. For discussion purposes 

defineX4 

t  * Til 
f(9, Y) - ll - -«- (3cos2Y + 1) - 2 -i -LJL  |aBin

2Y « j (f) (6.1) 
I2 T I2 

3 
PP 

g(e, T) « |1 + -3- (3sin2Y - 2)|2cos2Y ce j   (Y) (6.2) 

These two factors contain all the ¥ dependence of two of the inten- 

sities and 

f(0, |- Y) « Jm(T) 

g(0, |- Y) « Jpn(Y) 

(6.5) 

(6.4) 

contain the Y dependence of the other two. By changing the 

definition of Y from a geometrical one to a physical one it is 

possible to ascribe major features of the variation of intensity 

14 The symbol « indicates proportionality. 
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with crystal orientation to crystalline features. Let V  be the 

angle from [100] to the projection of the incident electric vector 

on the reflecting surface. Then in (6.5) and (6.k) V  = ^ - ¥ 

since the incident polarization is normal but in (6.1) and (6.2) 

V  = T. The curve f(0, V)  shows extinctions on the [100] and 

[110] axes and a maximum on the [111] axis (V  =  cos"^"^ = 54.7*). 

The curve g(0, V) shows extinctions at the [100] and [111] axes 

and an absolute maximum at the [110] axis.  These two curves 

(see Fig. 5) are independent of 6 and the material constants. 

K 
O 

O a 
o 

>■ 

Ul 

ORIENTATION ANGLE {[lOO] TO E) 

Fig. 5 - Variation of Intensity with Orientation 

90 
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Using the frequency and material constants given in section 2, 

f(8, y) and g(8, Y) have been computed for a representative 

sampling of points (e, Y). The comparison of f(0, Y) and f(8, Y) 

may be regarded as exhibiting the difference in shape between 

J (V)  and J (Y). Likewise comparison of g(0, Y) to g(8, Y) 

exhibits tne difference between J (Y' ) and J (Y). Since the Y pnv ' npx ' 

dependence is arbitrary to within a constant multiple, the com- 

parison in shape is made by normalizing the maxima. For 9 = ^5 

the maximun variation in shape between J (Y1) and J (Y) is 

60$ based on f(0, Y) and the maximum variation in shape between 

J (Y') and J (?) is lki.   Cn both cases the maximum variation pnv ' np      r 

occurs when the projection of the incident electric vector falls 

between the [100] and [111] axes.  For larger 8 the differences 

increase. Thus though J(Y) and J (Y) look more complicated, they have 

much the same shape as J (Y*) and J (Y') respectively. As to * nn       pn 

specific details of difference J (Y) does not show a perfect 

extinction at [110] and neither does J (Y) at [ill]. Furthermore 

the maximum of J (Y) and the relative minimum of J (Y) show a 

small shift from [111]. 

In addition f and g were computed in the approximations 

H s; 0 and H — 0 s: H which are convenient since they allow 
112 

partial or complete shift to real arithmetic. At first glance 

the last approximation seems poor since it means neglecting 

H = 1.55 by comparison with v = 5.89. The first approximation 
2 2 

changes f(l*5°j Y) by .05$ near its maximum and the second by 

'..01$ at the same point. In these approximations the largest 
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changes relative to the exact values at the same points are 10.5$ 

at Y = 90* and 2k% near Y = 85". Both approximations are the same 

for g(45*, Y) and change it by .2jJ. It seems clear that once a 

very small absorption is admitted, increasing the absorption 

causes no qualitative change until the critical point n" = n' is 

reached, at which point propagation ceases. The latter is vaguely 

indicated above by failure of the analysis. Equation (4.13) 

requires n ' > n " unless e ' •£ 0 and the latter causes a funda- 
1   i       1 

mental change In the character of the Helmhotz equation (3*4)• 

Furthermore, even the transition from no absorption to some absorp- 

tion appears smooth. The only qualitative change indicated above 

Is the disappearance of the system null solution (4.17). Evidently 

when there is seme absorption, the Brevster extinction becomes 

only a relative minimum. 

The next most complicated factors in the intensities are 

recognizable as transmission ratios—one for transmission of the 

fundamental Into the medium and one for transmission of the second 

harmonic out. The exact evaluation of the intensity coefficients 

for 8 = 45* gives the following. 

Jnn = 2.926 x 10"*|x|2ln
2f(0, Y») (6.5) 

J^ = 6.279 x 10-*|x|2ip
2g(45*, V) (6.6) 

Jpn = 4.348 x 10-*|x|2in
2g(0, V) (6.7) 

Jpp - 9-329 x 10-*|x|2lp
2f(45\ V) (6.8) 
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The following table lists per cent errors in the numerical 

coefficients in the approximations indicated. 

nn np pn PP 
2.2 2.0 2.1 2.0 

19.6 6.7 14.4 14.5 

x1
a=o 

H äOäx 
X        2 

Table 2. Errors in Two Approximations of the Intensities 

The conclusions of the last paragraph on the general effects of 

absorption still apply. Thus absorption considerations can be 

neglected if only qualitative behavior is sought. 

Much of the behavior expected has been verified by experiment. 

The variation of J  and J  with ¥ on an arbitrary intensity 
nn    pn 

settle were reported in 1961 by Ducuing and Bloembergen.15 Certain 

aspects of the variation in $  have been obtained including the 

minimum near the Brewster extinction.16 Finally |x| relative to 

that of potassium dihydrogen phosphate has been obtained at several 

frequencies and for other semiconductors and the phase of x f°r 

GaAs has been obtained at ruby laser frequency.17 The data on 

|x| is sufficient to show its general dispersion characteristics 

NL L 
and it is seen that peaks of x (<äu) roughly match those in x (ID). 

15 See footnote 5. The same results appear in N. Bloembergen, 
Nonlinear Optics, Benjamin 1965, pp. 126-7 with better identification 
of polarization cases. 
16 R. K. Chang and N. Bloembergen, Phys. Bev. Ikk,  775 (1966) 
17 R. K. Chang, J. Ducuing ana N. Bloembergen, Phys. Rev. Letters 15, 
415 (1965). For a review of reflected second harmonic experiments, 
see N. Bloembergen, Optica Acta 1J, 511 (1966). 
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7. REMARKS ON THE GENERAL PHASE MATCHING PROBLEM 

In the first section the possibility that the output signal 

might attain intensities of the same order of magnitude as the 

pump signal was mentioned. When the output signal is the second 

harmonic, phase match is known to be a necessary condition for 

this possibility.18 In this exposition of second harmonic genera- 

tion by reflection, phase match occurred as a null solution to 

the nonlinear wave equation, i.e., e =e in (^.8). because the 
x   2 

concept of null solution is quite general, there is a strong 

inference that it i6 an avenue for extending those implications 

of phase matching which are contained in the above necessary 

condition. Thus it should be possible to generalize the results 

listed on pp. 1-? for anisotropic nonabsorbing media and for 

optically active nonabsorbing media to anisotropic media exhibiting 

the most general linear optical effects. 

The character of this generalization may be sketched in outline. 

It will be matrix algebraic and 60 will not differ much from 

Kleinman's approach.1 If the indications of the last section on 

the relative unimportance of absorptive effects hold, the generaliza- 

tion of the work on birefringent media to include anisotropic 

absorption or the generalization of the work on optical activity 

to include circular dichroism is trivial. However, as a survey 

of effects attributable to the imaginary part of the dielectric 

18 J. A. Armstrong, N, Bloembergen, J. Ducuing and P. S. Pershan 
Phys. Rev. IP?, 19^0 (1962). 
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constant, the present effort is incomplete due partly to the ex- 

clusion of total reflection and partly to the lack of special 

consideration of the relation between optical activity -'Hd circular 

dichroism. Thus it will be necessary to complete the description 

of the dielectric constant. These generalizations still leave 

two classes of optical effects disjoint under the capability of 

describing phase match in terms of material properties. The two 

classes could be called symmetric and antisymmetric.19 Since the 

dielectric constant for optical activity requires wave vector 

dependence, perhaps these two classes can be merged by generalizing 

the anzatz (2.k)  to include spatial dispersion. 
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